Available Technologies

Browse Penn-owned technologies available for licensing.

HOME SEARCH RSS FEED

Nanoparticle-oligonucleotide hybrid structures for biosensors, bio-imaging, and targeted delivery

Description:

Self-assembled hybrid structures of DNA block-copolymers and nanoparticles with enhanced DNA binding and high selectivity

 

Inventor

So-Jung Park 

 

Technology Overview

Researchers in the Park lab have developed a method that exploits the self-assembling property of DNA-polystyrene block copolymers to synthesize hybrid nanoparticles. These hybrid structures encapsulate nanoparticles that are introduced during the self-assembly process. The self-assembled DNA functionalized nanostructure gives a large DNA surface density, one that is four fold larger than commonly used DNA functionalized gold nanoparticles. In the self-assembled state, as a result of the high surface density, DNA strands in the nanostructure shows high affinity and selectivity in binding to conjugate DNA strands when compared to the binding properties of these strands in bulk. As a result of this enhanced response, these higher-order nanostructures can be useful as biomarkers and biosensors. The composite nanoparticle also displays a high affinity to internalize in biological cells, which can be improve the efficacy of cancer therapeutics, including targeted drug delivery and gene therapy. The method is generic enough to allow the formulation of multifunctional hybrid nanoparticles, where additional functionality can be added from the heterogeneity in the composition of particles encapsulated.